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Abstract

The study of 2 × 2 linear iterative systems is incorporated in many books on ordinary differ-
ential equations. As in the case of linear systems of differential equations, the classification of the
equilibrium solution (0, 0) leads to an analysis of the eigenvalues and eigenvectors of the system
matrix. However the authors do not know of any textbook that investigates the phase portraits for
the many borderline cases in the trace-determinant Plane. The purpose of this paper is to fill in
these details. In addition, a recent software developed by Hubert Hohn of Massachusetts College
of Art for the purpose of this investigation is used for pictorial illustrations of these portraits.

1 SYSTEMS OF ITERATIVE EQUATIONS

For linear systems of differential equations d~Y
dt

= A~Y (t), or
(
dx
dt
dy
dt

)
=

(
a b
c d

)(
x(t)
y(t)

)
, we seek

solutions of the form ~Y (t) = eλt~v, where λ is an eigenvalue for the system matrix A and ~v is any
corresponding eigenvector. One motivation for seeking such a solution is the fact that a natural guess
for a second-order homogeneous linear differential equation ay′′ + by′ + cy = 0 is an exponential
function of the form eλt where λ is a solution to the auxiliary equation ar2 + br + c = 0.
In the discrete case, the general solution of a second-order homogeneous iterative equation ayn+2 +
byn+1 + cyn = 0, where yn is a sequence, the general solution takes one of the following 3 forms:

1. yn = c1λ1
n + c2λ2

n, where λ1 and λ2 are two distinct real solutions of the auxiliary equation
ar2 + br + c = 0.
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2. yn = c1λ1
n + c2nλ1

n, where λ1 is a double root for the auxiliary equation.

3. yn = rn (c1 cos(nθ) + c2 sin(nθ)), where λ = reiθ is a complex root for the auxiliary equation.

For the linear homogeneous iterative system{
xn+1 = axn + byn

yn+1 = cxn + dyn

or in vector form
~Yn+1 = A~Yn,

where ~Yn =

(
xn
yn

)
and A =

(
a b
c d

)
, (0, 0) is clearly an equilibrium solution. Using the information

from the second-order iterative equations, one seeks other solutions of the form ~Yn = λn~v, where λ is
an eigenvalue for matrix A and ~v is a corresponding eigenvector. In the case where matrix A has two
distinct eigenvalues (real or complex), the general solution ~Yn takes the form: ~Yn = c1λ

n
1 ~v1 + c2λ

n
2 ~v2,

where ~v1, ~v2 are corresponding eigenvectors for λ1 and λ2 respectively (see Farlow, Hall, McDill, and
West [2]). For the complex eigenvalues, the corresponding eigenvectors have complex entries and the
qualitative behavior of the solution is better understood by noticing that the real and imaginary parts
of any one solution are themselves solutions to the system.

Below is an example of a completely decoupled linear iterative system that can be solved with or
without any reference to the eigenvalues of the corresponding system matrix.

Example 1.1 Consider the system {
xn+1 = 1.05xn

yn+1 = 1.1yn

Its solution is clearly {
xn = x0(1.05)n

yn = y0(1.1)n.

Using vector notation, the system takes the form

~Yn+1 =

(
1.05 0
0 1.1

)
~Yn.

Its eigenvalues are 1.05 and 1.1, and two corresponding eigenvectors are respectively
(

1
0

)
and

(
0
1

)
.

Thus the general solution takes the form:

~Yn = c1(1.05)n
(

1
0

)
+ c2(1.1)n

(
0
1

)
or equivalently, {

xn = c1(1.05)n

yn = c2(1.1)n.

2
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Thus as n tends to ∞, both xn and yn approach infinity. The origin (0, 0) in this case is called a
source (See Figure 1). However we note in this case that the y-components are increasing faster
than the x-components; consequently, if we were to ”connect” the points that form the iteration (a
helpful device that is not actually part of the trajectory or orbit in the discrete case), the resulting
polygonal curve tends to become “parallel” to the y-axis, i.e. the eigenline corresponding to the
larger eigenvalue, just as for systems of differential equations.

Figure 1: A Source

In this example as well as in all subsequent examples, a software recently developed by Hu Hohn
for the purpose of this investigation is being used. Hohn is the director of Computer Arts at Mas-
sachusetts College of Art, Boston, MA, and has been a software designer for many of the CD’s
that appear in contemporary math books. Particularly, Hohn worked closely with author Jean-Marie
McDill on a companion CD for the book Interactive Differential Equation (IDE), co-authored by John
Cantwell, Steven Strogatz, and Beverly West ([5]). IDE is a collection of 92 labs built each to offer
a complete understanding of a particular concept in ordinary differential equations. One tool in par-
ticular is concerned with the linear classification of the equilibrium solution (0, 0) for 2 × 2 linear
systems of differential equations. The usefulness of this tool led the authors to ask Hohn to develop
a similar one for 2× 2 linear iterative systems. Figure 2 below is a snapshot of the classification tool
for the continuous case of example 1, as it will appear in IDE.

The classification tool developed by Hohn for the discrete case follows the same guidelines as in
the continuous case. The window consists of a system matrix in which the user can input the entries
of the system matrix, the eigenvalues and eigenlines of the system matrix, the trace and determinant
of the matrix and the trace-determinant plane (whose importance will become clear later), and the
phase plane with or without the vector field. The latter object adds a visual dimension to the solution
behavior as time progresses allowing a classification of the origin (e.g. stable vs. unstable). In
addition, the list of iterated values appears on the right hand side of the tool (see figure 3).
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Figure 2: Classification Tool in IDE

Below are 3 other examples in the discrete case with a detailed view of the newly developed (yet
non commercialized) tool in example 1.2.

Example 1.2 Consider the system {
xn+1 = 1.05yn

yn+1 = −1.1xn
or

~Yn+1 =

(
0 1.05
−1.1 0

)
~Yn.

The eigenvalues of this system are the solutions to the equation λ2 + 1.155 = 0. The solutions are the

pure imaginary numbers λ = ±i
√

1.155 ≈ ±1.075i, and ~v1 =

(
1

i1.075
1.05

)
, and ~v2 =

(
1

−i1.075
1.05

)
are

two linearly independent eigenvectors. One solution is therefore:

λn1 ~v1 = (1.075i)n
(

1
i1.075

1.05

)
.

But (1.075i)n = (1.075)n
[
cos
(
nπ

2

)
+ i sin

(
nπ

2

)]
. Separating the real and imaginary parts, we

obtain:

(1.075)n
(

cos
(
nπ

2

)
−1.075

1.05
sin
(
nπ

2

))+ i(1.075)n
(

sin
(
nπ

2

)
1.075
1.05

cos
(
nπ

2

)) .
Since the real and imaginary parts are also linearly independent solutions to this system, the general
solution takes the form:

~Yn = c1(1.075)n
(

cos
(
nπ

2

)
−1.075

1.05
sin
(
nπ

2

))+ c2(1.075)n
(

sin
(
nπ

2

)
1.075
1.05

cos
(
nπ

2

)) .
The sine and cosine terms in the solutions produce a spiralling effect on the solution. Due to the fact
that the magnitude of λ is bigger than one, the solution will spiral outwards, away from the origin.
The origin in this case (||λ|| > 1) is called a spiral source. (See Figure 3).
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Figure 3: A Spiral Source

Note that the vector fields shown in these figures determine only the direction of the next iteration
at a given point, and not the size of the iterative derivative step (which in many cases lands off screen).

Example 1.3 If we modify example 1.1 and change one sign to become:{
xn+1 = −1.05xn

yn+1 = 1.1yn

or
~Yn+1 =

(
−1.05 0

0 1.1

)
~Yn

then for this system, the eigenvalues are −1.05 and 1.1; hence the origin is still a source. The corre-
sponding eigenlines remain the x− axis and the y− axis, but because one eigenvalue is negative, the
iteration flips between the first and second quadrant of the plane (or the third and fourth, depending
on the initial condition), that is, back and forth across an eigenline. The origin in this case is called
a flip source.(See Figure 4).

Example 1.4 Now if we consider the system{
xn+1 = −1.05xn

yn+1 = −1.1yn

5
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Figure 4: A Flip Source

or
~Yn+1 =

(
−1.05 0

0 −1.1

)
~Yn

then we find that both eigenvalues are negative, and the iteration flips either between the first and
third quadrant, or the second and fourth, that is across both eigenlines. The origin in this case is a
double flip source.(See Figure 5).

2 THE TRACE-DETERMINANT PLANE

In the preceding section we have seen that, as a source, the equilibrium solution (0, 0) comes in 4
different types. One wishes therefore to find ways to classify this solution and consequently predict
the behavior of initial values problems. It is necessary therefore to pause and review the big picture!
For 2 × 2 linear systems of differential equations, parabola det(A) = 1

4
(tr(A))2 is the determining

factor for the existence of two distinct eigenvalues, one repeated eigenvalue, or complex eigenvalues
for the system matrix A. On this issue, Paul Blanchard, Robert Devaney, and Glenn Hall write: ”As
is often the case in mathematics, it is often helpful to view information in several different ways.
Since we are looking for the ”big picture,” why not try to summarize the different behaviors for linear
systems in a picture rather than a table? One such picture is the trace-determinant plane” ([1], p.
333). The same is also true for 2× 2 linear iterative systems. Indeed, the eigenvalues of such systems
are solutions to the characteristic equation of A given by: λ2 − tr(A)λ + det(A) = 0. Thus, in case
(tr(A))2−4det(A) < 0 (i.e. above the parabola det(A) = 1

4
(tr(A))2 in the trace-determinant plane),

the iterated points will either spiral toward or away from the origin (or simply form closed loops if
|λ| = 1). On the other hand, below the parabola ((tr(A))2 − 4det(A) > 0), the origin is in general
either a source, a sink, or a saddle, a regular source, or a regular sink.

6



The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

Figure 5: A Double Flip Source

The theorem below identifies more specifically these regions. We only present the proof of the first
part.

Theorem 2.1 Let ~Yn+1 = A~Yn, where ~Yn =

(
xn
yn

)
and A is a 2×2 matrix having two distinct eigen-

values λ1 and λ2. The two diagonal lines

det(A) = tr(A)− 1 and det(A) = −tr(A)− 1

identify the regions where we have a sink, a source, or a saddle as follows:

1. If |det(A) + 1| < |tr(A)|, then the origin is a saddle point.

2. If det(A) > tr(A) − 1 and det(A) > −tr(A) − 1, then the origin is a source whenever
det(A) > 1, and a sink whenever −1 < det(A) < 1.

Proof: 1. Suppose that tr(A) > 0, then |det(A) + 1| < tr(A) or −tr(A) < det(A) + 1 < tr(A).
Since det(A) + 1 < tr(A), then λ1λ2 − λ1 − λ2 + 1 < 0 or (λ1 − 1)(λ2 − 1) < 0. This fact implies
that either

λ1 < 1 andλ2 > 1, orλ1 > 1 andλ2 < 1.

Since det(A) + 1 > −tr(A), then by a similar argument, either

λ1 > −1 andλ2 > −1 orλ1 < −1 andλ2 < −1.

In conclusion, we either have:
−1 < λ1 < 1, λ2 > 1

or
−1 < λ2 < 1, λ1 > 1.

7
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Thus, the origin is a saddle.
A similar argument shows that if tr(A) < 0, then either

−1 < λ1 < 1, λ2 < −1

or
−1 < λ2 < 1, λ1 < −1

resulting again in a saddle. 2

The line segment det(A) = 1 inside the parabola separates the spiral sinks from the spiral sources.
Clearly, in order for this bifurcation to occur, the points on this line are expected to be centers.

Indeed, when det(A) = 1 the complex eigenvalues take the form λ =
tr(A)± i

√
4− tr(A)2

2
and

hence ||λ||2 = 1
4
(tr(A)2 + (4− tr(A)2)) = 1.

The qualitative behavior for solutions of iterative systems that correspond to points in the source/sink/saddle/center
regions of the Trace-Determinant plane has already been studied (see [2] and [4]). Figure 6 summa-
rizes this behavior. The authors however are not aware of any literature on the subject describing the
qualitative behavior on the boundaries of these regions, specifically the parabola and the diagonals. In
this paper, we fill in this gap and describe also in detail the behavior on the trace axis, the determinant
axis, and the center axis.

Figure 6: The Source/Sink/Saddle/Center Regions in the Trace Determinant Plane

3 THE BORDERLINE CASES

We now look at the system ~Yn+1 = A~Yn on the borders of the regions as seen in Figure 6. One
important border is the parabola given by det(A) = 1

4
(tr(A))2. In this case, the characteristic

8
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equation has a double root. The general form of the solution has been investigated by the authors in
[3] and the following was proved:

Theorem 3.1 Consider the system ~Yn+1 = A~Yn having one repeated eigenvalue λ 6= 0, and let ~v
denote a corresponding eigenvector.

1. If a second independent eigenvector exists for the repeated eigenvalue λ, then the general solu-

tion of the system takes the form Yn = λn
(
x0

y0

)
, where x0, y0 are some initial conditions.

2. If another independent eigenvector does not exist, then the general solution of the system takes
the form:

~Yn = c1λ
n~v + c2λ

n (n~v + ~u)

where (A− λI) ~u = λ~v.

Figures 7 and 8 illustrate graphically the phase portrait in each case.
We now wish to investigate the phase portraits on the right diagonal det(A) = tr(A)− 1. In this

case, we can easily show from the characteristic equation λ2 − tr(A)λ+ det(A) = 0 that one eigen-
value is always 1. Let L1 denote its corresponding eigenline. The second eigenvalue can vary; indeed,

λ =
tr(A)± |tr(A)− 2|

2
. The general solution takes the form ~Yn = c1 ~v1 + c2(λ2)

n ~v2. Since one part

of the solution is fixed (c1 ~v1), ~Yn will always form a line parallel to the eigenline L2 corresponding to
the eigenvector ~v2. Three subcases arise:

1. If tr(A) > 2, then λ1 = 1 and λ2 = tr(A) − 1. In fact in this case, λ2 > 1 and the general
solution diverges along a line parallel to L2.

2. If tr(A) = 2, then λ2 = 1, but also det(A) = 1
4
(tr(A))2 so this point is also on the parabola, a

repeated eigenvalue vase investigated in [2].

3. If, on the other hand, tr(A) < 2, then λ1 = 1 and λ2 = tr(A) − 1 < 1. Thus the general
solution depends on one of five cases:

(a) If 0 < λ2 < 1, then the general solution ~Yn converges to the point c1 ~v1 on the eigenline
L1.

(b) If λ2 = 0, then tr(A) = 1, det(A) = 0 (a point that also belongs to the trace axis), and the
general solution is simply ~Yn = c1 ~v1; that is, starting at any initial condition, the iteration
maps it to a point on eigenline L1.

(c) If −1 < λ2 < 0, then the general solution ~Yn converges to the point c1 ~v1 on the eigenline
L1 but flips while doing so because of the negative eigenvalue.

(d) If λ2 = −1, then tr(A) = 0, det(A) = −1 (a point that belongs also to the determinant
axis), and ~Yn = c1 ~v1 + c2(−1)n ~v2. Hence the iteration flips between c1 ~v1 + c2 ~v2 and
c1 ~v1 − c2 ~v2.

(e) Finally if λ2 < −1, then ~Yn flips and diverges along a line parallel to L2.

9
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Figure 7: The Case of Two Independent Eigenvectors
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Figure 8: The Case of One Eigenvector
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Figure 9 summarizes all the possibilities. In this figure however, the system matrix has been diago-
nalised so that eigenline L1 corresponding to the eigenvalue 1 is the x-axis.

On the left diagonal det(A) = −tr(A) − 1, one can easily show that an eigenvalue is −1 (with

corresponding eigenline L1), while the second one varies. Indeed, λ =
tr(A)± |tr(A) + 2|

2
, and the

general solution is ~Yn = c1(−1)n ~v1 + c2(λ2)
n ~v2. The following sub-cases arise:

1. If tr(A) > −2, then λ1 = −1, λ2 = tr(A) + 1 > −1. Thus the general solution depends on
one of five cases:

(a) If−1 < λ2 < 0, then both eigenvalues are negative. The iteration double flips to converge
to a cycle of two points c1 ~v1 and −c1 ~v1.

(b) If λ2 = 0, then det(A) = 0 (a point on the trace axis), and the iteration flips between c1 ~v1

and −c1 ~v1 along L1.

(c) If 0 < λ2 < 1, then ~Yn flips initially but eventually converges to a 2-point cycle c1 ~v1 and
−c1 ~v1 along L1.

(d) If λ2 = 1, then ~Yn = c1(−1)n ~v1 + c2 ~v2, which is a solution that flips between c1 ~v1 + c2 ~v2

and −c1 ~v1 + c2 ~v2.

(e) Finally if λ2 > 1, then ~Yn diverges and flips along two lines parallel to the second eigenline
L2.

2. If tr(A) < −2, then λ2 < −1, and the iteration double flips and diverges.

3. If tr(A) = −2, then λ1 = λ2, a repeated eigenvalue case investigated in [3].

Figure 10 summarizes all the possibilities. In this figure however, the system matrix has been diago-
nalised so that the eigenline L1 corresponding to the eigenvalue −1 is the x-axis.

On the determinant axis the trace is equal to zero; hence the eigenvalues take the form λ =
±
√
−4det(A)

2
. Solutions are therefore either real or pure imaginary. Moving from the upper-half of

the trace-determinant plane until we reach the trace axis, solutions will begin by spiralling out, then
bifurcate at the center axis to spiral inwards to the origin. In the lower half of the plane, the origin
moves from a flip sink to a flip source, with a bifurcation occurring when det(A) = −1. In this latter
case, the eigenvalues are λ = ±1, hence the general solution takes the form ~Yn = c1 ~v1 + c2(−1)n ~v2,
and the iterated points flip between two fixed points c1 ~v1+c2 ~v2 and c1 ~v1−c2 ~v2. Figure 11 summarizes
all the possibilities. Again the system matrix has been diagonalised so that the eigenlines are the x-
and y-axes.

On the trace axis the determinant of the matrix is zero; hence one eigenvalue λ1 is necessarily
zero, and the general solution of the system takes the form ~Yn = cλn2~v. Consequently, the first time the
iteration is applied, the initial point (x0, y0) is mapped to a point on the eigenline L2 corresponding
to the non-zero eigenvector λ2. Thus all subsequent iterations remain on that line. More precisely,

1. If λ2 > 1, the iteration diverges along eigenline L2.

12
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2. If λ2 = 1, then Yn = c~v and the iteration is fixed at that point. Notice that the correspond-
ing point in the Trace-Determinant plane (tr(A) = 1, det(A) = 0) is also a point on the right
diagonal.

3. If 0 < λ2 < 1, then the iteration converges to the origin along L2.

4. If −1 < λ2 < 0, then the iteration converges to the origin but this time it flips along L2.

5. If λ2 = −1, then the solution takes the form ~Yn = c(−1)n~v, and the iteration flips along L2

between c~v and −c~v. This case is special since the point (tr(A) = −1, det(A) = 0) is also a
point on the left diagonal.

6. Finally, if λ2 < −1, then the iteration flips and diverges along L2.

Figure 12 summarizes all the possibilities. The system matrix has been diagonalised so that L2 is the
x-axis.

The center axis exhibits some exceptional behavior at various points. As we move along the
center axis starting at (2, 1) and ending at (−2, 1), we look in particular at the points (1, 1), (0, 1) and
(−1, 1).

Proposition 3.2 1. If det(A) = 1 and tr(A) = 1, then the iteration forms a closed loop of 6
points.

2. If det(A) = 1 and tr(A) = 0, then the iteration forms a closed loop of 4 points.

3. If det(A) = 1 and tr(A) = −1, then the iteration froms a closed loop of 3 points.

Proof:

1. When det(A) = 1 and tr(A) = 1, λ =
1

2
± i
√

3

2
, and the general complex solution takes the

form ~Yn = c1λ
n
1 ~v1 + c2λ1

n
~v2. Since λ3

1 = −1 and λ6
1 = 1, the iterated points form a 6-point

cycle.

2. When tr(A) = 0, the eigenvalues are λ = ±i. Since i4 = 1, the iteration forms a 4-point cycle.

3. Finally, when tr(A) = −1, λ = −1
2
± i

√
3

2
. In this case λ3 = 1, and the iteration thus forms a

3-point cycle.

2

Figure 13 shows various possibilities.
The cases exhibited in Proposition 3.2 are not the only possible cycles. One can show 1 that if the

system matrix is a rotation matrix of the form A =

(
Cos

(
2π
k

)
−Sin

(
2π
k

)
Sin

(
2π
k

)
Cos

(
2π
k

) ), where k is a positive

integer, then the iterated points form a k-point cycle. Thus if for instance k = 6, the iteration is

1We wish to thank Beverly H. West of Cornell University, and Bj∅rn Ferslager of Haslev Gymnasium, Denmark, for
their valuable suggestion.
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expected to form a 6-point cycle. Indeed, in this case, the system matrix is A =

(
1
2
−
√

3
2√

3
2

1
2

)
,

consequently, tr(A) = 1, and det(A) = 1. In the previous proposition we showed that a 6-point cycle
is formed in this case.

In conclusion, this paper not only provides a complete linear classification of 2 × 2 linear itera-
tive systems, but also a visual illustration of this classification is presented using a software that was
particularly developed for that purpose. Technology has been the driving force for many new inves-
tigations in mathematics, and indeed the work developed by Hohn in projects like IDE encouraged
the authors to pursue the idea of a similar software for iterative systems. The software is not as so-
phisticated as IDE, but its dynamical environment lead the authors to conjecture many results before
proving them analytically.
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Figure 9: The Right Diagonal
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Figure 10: The Left Diagonal
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Figure 11: The Determinant Axis
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Figure 12: The Trace Axis
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Figure 13: The Center Axis
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